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Graph theory and relativistic field equations for half odd 
integer spin and unique mass 
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Abstract. Graph theoretical methods are used to analyse relativistic field equations for 
half odd integer spin and unique mass. The analysis is easiest when repeated irreducible 
representations (RIR) of the Lorentz group do not occur, but the methods apply in general 
cases, and can also be used for equations with a mass-spin spectrum. A simple graph 
theoretical method for finding the possible minimal polynomials of Lo is given, and some 
general results on the possible structure of the equations are obtained. As an example, all 
theories of spin-$, without RIR, are considered and it is shown that there are none with 
unique mass. Theories with RIR are briefly discussed. 

1. Introduction 

This paper is directed at the problem of practical evaluation of high-spin field theories 
based on the usual equation (2.1). While much is known about the theory of (2.1), its 
practical study in a particular case involves much complicated but elementary algebra 
(Capri 1969, Capri and Shamaly 1971, Hurley and Sudarshan 1974, 1975, Khalil 
1977, Kobayashi 1977). In earlier papers we have given a graph theoretical approach 
which obviates some of this algebra (Cox 1974a, b, c). Graphs associated with (2.1) 
and a given reducible representation %! of the proper Lorentz group Zp are used to 
characterise the equations and analyse the mass-spin spectra. We concentrate on 
unique mass-spin theories, but the methods apply also to multi-mass-spin theories. 

In the earlier papers the graphs were used to study the characteristic equations of 
the s-blocks of Lo, and to count the conditions required for quantisable theories, 
There was no guarantee that these conditions could be satisfied for a given represen- 
tation %!, and although the general form of the minimal polynomial of Lo was known, 
there was no way of obtaining this for a particular %!, other than by direct calculation, 
Here we show how the possible forms of the minimal polynomial of the s-blocks can 
be obtained immediately by visual inspection of their graphs. The results can be used 
to eliminate many possible mass-spin spectra without any calculation, or if calculation 
is needed, it is made most efficient. As an example we consider unique mass-spin 
theories without repeated irreducible representations (RIR) of TP. We give the most 
general possible forms for the maximum spin blocks and show that there are no 
unique mass-spin theories for spin-; unless RIR are introduced. We expect this to be 
so for any half odd integer spin greater than $. 

We assume (2.1) is covariant under the complete Lorentz group and is derivable 
from a Lagrangian (actually the last requirement is not essential). Also, we consider 
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half odd integer spin because the results seem to be stronger in this case. When RIR 
are present the graphical results (except theorem 3) still hold, but are more difficult to 
use. 

The reason for studying (2.1) is that, because of the well known inconsistency 
problems of high-spin interacting fields, it is important to understand fully the 
structure of such equations. So far studies of (2.1) have been confined to simple 
representations 9? and we hope the methods given here will make more complicated 
representations accessible. 

In 0 2, equation (2.1) and its graphs are briefly reviewed. Section 3 contains the 
required graph theory results. Section 4 applies these results to unique mass-spin 
theories without RIR, while 0 5 looks briefly at equations with RIR. Useful results are 
still obtainable in the latter case, in particular we are able to specify precisely the 
minimum polynomial of the recently proposed high-spin theory of Singh and Hagen 
(1974). Section 6 is the conclusion. 

2. Field equations and associated graphs 

Irreducible representations of 2’p are denoted by T = ( lo ,  1 1 )  where lo ,  I ,  are both half 
odd integers and 11 > [ l o / .  The connection with the usual notation 9 ( k ,  I) is 

lo = k - 1, 11 = k  + I +  1. 

On restriction to the space rotation group ( lo ,  ZI) reduces to spin representations with 
weights ) l o ) ,  \lo\ + 1, . . . , 21 - 1. The representation conjugate to T = ( lo ,  11) is denoted 
by T‘  = (-10, l l ) ,  and so space reflection corresponds to reflection in the lI axis, 

The general finite-dimensional first-order free field equation for half odd integer 
spin can be written 

where t,b transforms according to some in general reducible representation 2 of Lfp. 
Choosing matrix representations for L, and 4 (we take x as a multiple of the unit 
matrix) such that the Lfp representation is a direct sum of irreducible representations ri 
of 2ZP, Lo can be written in the form 

L~ = A, 

where 

A, = [Cy‘] 

and the spin index takes the values s = ll& \lo/ + 1, . . . , I 1  - 1 for the irreducible 
representation T - (lo, l ~ ) .  The elements of the s-block, A,, are scalar matrices and its 
dimension is given by the number of representations ( lg) ,  / ? I )  such that Ilg’i S s d 
p - 1 .  

The mass-spin spectra of the theory is provided by the eigenvalues of the s-blocks. 
In particular, if (2.1) is to describe a particle with unique rest mass m and spin j then 
all A, must be nilpotent except for Ai, which must have exactly two non-zero 
eigenvalues *Xlm. 
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The Lorentz covariance of (2.1) implies that the Cy' are non-zero only for 
coupled representations: 

(lb, G ) =  ( lo+ 1, 11) 

c y '  = p ( s ,  l0)C" 

c;" = p(s ,  l0)C"' 

CT" = p(s, lI)C*' 

c:'T = p ( s ,  11)CT" 

(lb, G ) = ( l o ,  11+1) 

where C"' are arbitrary complex numbers and p(s, n ) =  I[(s + n + l)(s - r ~ ) ] ' ' ~ l .  Space 
reflection covariance implies 

cm8 = C'"" 

which with the requirement of Lagrangian origin yields 

ci'T = S ( T ,  T ' ) C  

(cf integer spin case, Cox 1974a, b, c) where S ( T ,  T ' )  = i l .  
As in the integer spin case, a particular equation (2.1) is characterised by a linear 

graph G with vertices denoting the irreducible representations T~ in 3 and an 
undirected edge connecting those representations T ,  T' such that Cr' # 0 for some s. 

Any theory based on (2.1) for half odd integer spin without RIR can be represented 
by a subgraph of a lattice graph exemplified in figure 1. If RIR occur a vertex is used 
for each copy of the same representation. In this case G is no longer a lattice graph. 

t '1 

1 

\\\ L 
\ c 
\ 

Figure 1. Lattice graph for a general maximum spin-: theory without RIR. 

The representations T~ which can appear in an s-block, A,, are those in or on the 
rectangle 

lo  = -s, 

11 = s + 1, 

lo  = s 

l l = j + l  

where j is the maximum value of s in the representation R .  This corresponds to a 
subgraph G, of G. The corresponding directed graph (digraph) with directed edges in 
both directions between any two vertices adjacent in G,, is denoted by D,. The edges 
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of D, may be labelled with the corresponding elements of A,, which may conversely 
be written down by reference to the graph D,. 

G and G, are bigraphs (Cox 1974c) and so the s-blocks can be partitioned in the 
form 

v1 v2 

E, ?I ;; 
VI, V2 being the usual disjoint vertex sets in G, (see § 3). Since ri and ri are 
connected by paths of odd length, they must lie in different vertex sets, thus if r ;  E VI 
then 71 E Vz. If we now arrange the rows and columns of A, in the form 

VI v2 
. .  

7 1 ~ 2 . .  . r,, 7172.. . r,, 
space reflection symmetry implies that the s-block takes the form 

(2 .3 )  

3. Graph theoretical results 

Let G be a linear graph with n vertices { v i }  and edges (U;, vi) ,  and D the corresponding 
digraph obtained by replacing each edge of G by two undirected edges one in each 
direction. 

An edge sequence or walk of length 1 in G is a finite sequence of edges of the form 
(vo, ul),  (VI, v2). . . (01-1, vl) .  An edge sequence in which all the edges are distinct is 
called a path (Wilson 1972). If in addition all the vertices are distinct (except possibly, 
vo  = v l )  then the path is a chain. A closed chain (vo  = ul) is a cycle. 

A set of disjoint cycles (SDC) in D is a set of directed cycles (all edges like directed) 
in which no pair of cycles passes through the same vertex. A set of disjoint cycles in G 
has the same definition as for D without the reference to direction. However, the 
cycles of length two in D correspond to the edges of G, so any set of disjoint 2-cycles 
in D corresponds to a set of vertex disjoint edges in G, i.e. a matching in G. A 
matching in G containing the maximum possible number of edges is called a maximal 
matching ( M M )  on G, and the number of edges in a MM is called the line independence 
number of G, denoted P1(G). A matching which covers all vertices of a graph is called 
a perfect matching on the graph. 

A bipartite graph (bigraph), G(V,, Vi), is one in which the vertex set V can be 
partitioned into two disjoint subsets VI, V, such that no vertex in V1(V2) is adjacent 
to any other vertex in Vl( V2). A graph is a bigraph if and only if all of its cycles are of 
even length. 

An associated matrix of the digraph D, denoted A(D) ,  is a matrix which only has 
non-zero elements in positions i, j if there is a directed edge from vi to vi. The ifih 
element aii associated with this edge is called the weight of the edge. The non-zero 
elements of the general associated matrix are arbitrary and it merely forms a matrix 
representation of the connectivity of D. The associated matrices occurring in rela- 
tivistic equations considered in this paper are quasi-Hermitian, i.e. 

- a.. = s..a.. 
11 11 11 
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where sij = * l ,  although it is not always necessary to assume this to obtain useful 
information. 

If D' is a subgraph of D, then the edge weight product over D' is the product of the 
weights of all the edges in D'.  Let cr(D) denote the edge weight product over a SDC on 
D covering r vertices. If the SDC are numbered in some way, denote the edge weight 
product for the ith set by c?)(D).  Define 

%,(D)= (-l)%?)(D) ( 3 . 1 )  

where li is the number of cycles with even length in the ith SDC. %',(D) is then the 
coefficient of (-A)"-' in the characteristic polynomial A(-A) for A ( D )  (Cox 
1974a, b, c). 

If we are only interested in the 2-cycles of D, for example if G is a tree, then it is 
convenient to consider G instead of D and to take the weight of the edge ( i ,  j )  to be 
~ ~ ~ = u ~ ~ u ~ ~ .  Then if we denote the edge weight product of the ith matching on r 
vertices, in the graph G, by M$)2G, we define 

and in the special case of G a tree, MrI2(G) is the coefficient of (-A)"-' in A(-A) for 
A(D) .  The importance of matchings lies in the fact that if G, is an s-block then the 
number of conditions imposed by a required mass spectrum for the spin s is Pi(G,), 
and so can be determined by finding a MM on G, (Cox 1974a, b, c). However, there is 
no guarantee that these conditions can be satisfied. It may be impossible to choose the 
elements of the s-block such that a specified mass spectrum can be realised. The 
object of this paper is to study this aspect more deeply and develop graph theoretical 
methods for analysing such mass spectra conditions. We now give a number of results 
which are used in this approach. 

If a graph G contains an edge (vi ,  v i )  connecting two otherwise disjoint subgraphs 
G1 and Gz then (vi ,  v i )  is called an isthmus of G. 

Theorem 1. If G is a graph of n vertices with an isthmus (ui, v i )  connecting subgraphs 
G1, G2 and D, D1, D2 the corresponding digraphs then 

where D1-ui  (D2-vj)  denotes the digraph D1 ( 0 2 )  with the vertex vi ( v i )  and all 
adjacent edges removed, and we define, for any digraph D :  

Wo(D) = 1 

W , ( D ) = O  ifs < 0 or s > n. 

Proof. Consider separately those SDC which do not contain the 2- 
cycle i j and those that do, using the definition (3.1). 

(3.3) is particularly useful when D1 = D,. Theorem 1 can also be extended to 
handle a graph with any number of isthmuses-in particular trees-in an obvious way. 
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For matchings we have the corresponding result 

I 1-2 

k = O  k =O 
= E' M I C / ~ ( G I ) M ( ~ - ~ ) / ~ ( G ~ )  - Wij 1' Mk/2(G1- Ui)M(r-k-2)/2(G2- vi). 

(3.4) 

Here Z' denotes summation only over even values of k. (3.4) is proved as for theorem 
1, but replace SDC by matchings and (3.1) by (3.2). 

Using the above results we can often split Wr(D) into expressions involving W,(Di) 
where Di are simple subgraphs of D and s is fairly small, and similarly for Mrp(G) .  
This corresponds to some algebraic organisation of the terms in the coefficients W,(D) 
of (-A)"-' in IA(D)-AIl= O-an organisation based on the structure of the graph 
G-which often is very useful in the analysis of the conditions imposed by a given 
mass spectrum. 

We can also deduce the possible forms of the minimal polynomial of an associated 
matrix of a bigraph, and in particular the s-blocks, by direct inspection of the graph G .  
For high-spin theories, the minimal polynomials we will be interested in will have one 
of the forms 

k 
( - A ) q  n [(-A)'- m : ]  q a l  

i = l  r (-A Iq q > l .  
m(-A)= 

(3.5) 

(3.6) 
In (3.5) all the mi are distinct. In each case we will call q the index ofnilpotency. Now 
from 0 2, the s-block can be written in the form 

by appropriate numbering of vertices. The characteristic equation of A can then be 
written 

So the eigenvalues of A are *a where a is an eigenvalue of B. Now if A has the 
minimum polynomial (3.5) then we can take the eigenvalues of B as 0, ml, m2,.  . . , 
mk and the minimal equation of B will be of the form 

k 

BP n (B-mi)=O. 
i = l  

By substitution of (3.7) into the minimal equation of A we find p = 4, so the minimal 
equation of B must be 

k 
Bq n (B-mi)=O. 

i = l  

Thus, 

Rank(B) 2 k + 4 - 1. (3.9) 
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From a known result of graph theory (Ore 1962, theorem 7.7.2) we have 

Rank(B)s  P1(G). 

This result applies whether or not the MM is perfect. However, if the MM is perfect we 
can in fact assert 

Rank(B)sP1(G)-l  

if (3.8) is to be satisfied, since B is to be singular and if the MM is perfect P1(G) = size 
of B. So we can state 

P'(G) if MM not perfect 
P1(G)- 1 if MM perfect 

Rank(B)s  { 
and with (3.9) this gives 

p ' - k + l  if MM not perfect 
q s  ( P 1 - k  if MM perfect. 

(3.10) 

(3.11) 

If A is to be nilpotent, i.e. have minimal polynomial (3.6) then the same arguments 
yield for the index of nilpotency: 

if MM not perfect 
if MM perfect. 

(3.12) 

The above gives a graphical method for finding an upper bound on the degree of 
the minimal polynomial of an s-block A with k particle-antiparticle pairs by direct 
inspection of the graph. 

The graphs also provide a lower bound for the degree of the minimal polynomial. 
Consider all those pairs of vertices {vi, v i }  which have exactly one path between them, 
and let d, be the length of the longest of such paths. Thus, d, is the length of the 
longest unique path in the graph. Now for an associated matrix A, the ijth entry in A' 
is the sum over edge weight products of all edge sequences between vertices vi and vi. 
It follows that if v i  and ui are of any two vertices in the graph G separated by d,, then 
A', A', A2,  . . . , AdUP1 all have zero in the ( i , j )  position, while Ad" has a single term 
which cannot be zero. Thus, the matrices A', A, A', , , . , Ad" are linearly indepen- 
dent and the minimum possible degree of the minimal polynomial is d,+ 1 (Biggs 
1974). This is independent of the mass spectra. 

We can now summarise the above results in the following theorem. 

Theorem 2. Let A be an associated matrix of the form [g E] of a bigraph G(V1, V2), 
with I M M I  = and longest unique path of length d,. If A has 2k non-zero eigenvalues 
*mi, then it has the minimal equation 

where 

P i -k  + 1 if MM not perfect d,-2k + 1 S q  S 
( P 1 - k  if MM perfect. 
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In the particular case of A nilpotent this gives for the nilpotency index: 

MM not perfect 
MM perfect. 

In the case of just two non-zero eigenvalues it reads 

P1 MM not perfect 
P1-1 MM perfect. 

d,- 1 sq s { 
For the graphs we have to deal with, both d, and P 1  are easily found by inspection, 

allowing a quick determination of the possible minimal polynomials of the s-blocks. 
A further useful result, applicable if RIR are not present, can be obtained from a 

recent criterion for irreducibility of (2.1) (Sudarshan et a1 1977). The system (2.1) is 
said to be irreducible if it is not covariantly reducible to two or more smaller systems 
of equations. 

Theorem 3. The equation (2.1) based on a representation with non-repeated 
irreducible representations of ZP and with associated undirected graph G, is irreduci- 
ble if and only if G is strongly connected. 

When RIR occur the situation becomes more complicated. Note that theorem 3 
does not mean the s-blocks must be connected. 

4. Analysis of s-block spectra and possibility of unique mass-spin equations without 
RIR 

Consider first the maximum spin block graph Gi, which will be some subgraph of a 
graph of the form typified in figure 2. We call such graphs symmetric combs. Some of 
the edges may be missing, but we adopt a standard numbering system for the edges, 
exemplified in figure 2, which is maintained even when edges are missing. As the 
graph is a tree we need only consider SDC of 2-cycles in D,, or matchings in G,. In the 
latter case we here denote the weight of edge i by ai. By symmetry of the graph we 
only have to number the middle edge and one half of the comb. The horizontal edges 
are numbered odd and the vertical edges are even. The length of the spine of the 
comb (7 in this case) is called the width of the comb, denoted U ,  and unless otherwise 
stated we will assume that the spine is connected-i.e. there are no gaps in it-while 
vertical edges (‘teeth’) may be missing. With this notation we can specify all such 

Figure 2. Symmetric comb graph for a maximum spin-; block. 
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combs by the notation 

(wlel ,  e ' , .  . . , e , )  

where the el ,  e', . . , , e, are a selection of even numbers chosen from 0 (no teeth) to 
W + l .  

Theorem 4 .  A connected symmetric comb cannot have a nilpotent associated matrix. 

Proof. First, note that PL d w + 1 if edge w + 1 is present and P1 s w - 1 if not. But if 
w + 1 present, d, = w + 2  and theorem 2 gives for the nilpotency index q of any 
nilpotent associated matrix A :  

w + 3 d q s w + 2  

which is impossible. If w + 1 is not present, d ,  = w and theorem 2 gives 

w + l s q s w  

again impossible. Hence the associated matrix A cannot be nilpotent. 

Further, it can only carry just two non-zero eigenvalues, i.e. correspond to a 
particle with unique mass, if it is of a certain type (see the following theorem). 

Theorem 5. The only symmetric combs which can have an associated matrix with 
exactly two non-zero eigenvalues are of the form 

(w12,4,. . . , w -3, w - 1). 

Proof. The minimal equation of the associated matrix would have to have the form 

A* (A' - m ') = 0 

where from theorem 2 

d u - l S q d P 1  

or 

d u d @ l + l .  

If edge w + 1 is present this can only happen for the comb (w/2,4,  . . . , w + 1 t i . e .  the 
combs with no missing teeth. But this comb has a unique perfect matching and so A 
could not be made singular. So the edge w + 1 must be absent. Then d ,  = w and we 
must therefore have P1 2 w  - 1, which can only occur for the comb ( w ) 2 , 4 ,  . . . , w - 1). 
We would then have q = w - 1 and so the minimal equation would be 

A " - 1 ( A 2 - m 2 ) = 0 .  (4.2) 

To verify that the weights of (w/2,4, . . , , w - 1) can indeed be chosen so that the 
associated matrix has just two non-zero eigenvalues, we examine the coefficients 
M,,z(G) in the characteristic equation, using (3.4), treating edge 1 as isthmus. 

In (wl2,4, . . . , w - 1 )  there are 2w vertices and so the characteristic polynomial of 
A has the form 

A(-A)= (-A )'((-A + Mi(G)(-A )2w-4 + M z ( G ) ( - A ) ~ " - ~  + . . . + M"-i(G)). (4.3) 
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By inspection we obtain 
2 2  2 2 Mw-l(G)= (-1)”’-’(a,-1+aw) a0-3aw-5.. . ~2 

= O  if +a, = 0. 
(4.4) 

Since M,-2(G) must also contain the factor 
on assuming (4.4). We now note the reduction formula: 

Mw-3((~12, 4, . , U - 1)) 

+a,, this will also vanish identically 

=M: (J-’] Mu-5 [U w - 4  ] 
+ 2M1 [ J - 1 ] M , - 4 [ . w - J - 3 1  ?”*cN I w -4 1 w-31 
+Mw-3((w - 2 / 2 , 4 , .  * * , w -3)). 

Using (4.4) this gives 

Mw-3((w12,4, . . . ,U -1)) 

= Mw-3((w - 212,4, . . . , w - 3)) 
=(-1)w-3(aw-2+u,-3)2a’,-~. * .  a2 2 

= O  if + aw-3 = 0. 

(4.5) 

Continuing in this way we obtain 

M,-l((W(2,4, . . * , U - 1))= 0 if a r + a r - 1 = 0 , r = 3 , 4 , .  . . , U  (4.6) 

and 
M1(G)= al. (4.7) 

So, choosing the elements of the associated matrix to satisfy (4.6), we can indeed 
obtain the characteristic polynomial 

A(+)  = (-A ) 2 w - 2 ( ~  - al) 

A”-’(A’ - all= 0. (4.9) 

(4.8) 
as required. The minimal equation will then be 

This completes the proof. 

Theorem 5 and its proof tell us exactly what graphs are available for the 
maximum spin block (which by theorem 4 must be massive), namely the combs 
(w12,4, . . . , w - 1); furthermore it tells us how to achieve the required mass spectrum, 
by satisfying (4.6), and that the minimal equation must be of the form (4.9). If the 
maximum spin block is allowed to have more than one particle-antiparticle pair then 
we can repeat the analysis using the general form of theorem 2 .  

Now that we know the possible connected graphs available for the maximum spin 
blocks, we have to look at the lower spin blocks. For a unique mass theory these must 
all be nilpotent. Note that except for the case ( l l O ) ,  the unique mass maximum spin 
block cannot be diagonalisable, since by (4.9) the zero eigenvalue factor must be 
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repeated. Further, none of the other blocks can be diagonalisable since they must be 
nilpotent. Thus, we are dealing with theories in which no s-block can be diagonalised, 
except in the case (110) in which only the maximum spin block can be diagonalised. 
For such theories the graphs below the maximum spin block can, on the face of it, be 
quite arbitrary (Amar and Dozzio 1972a, b). However, we will find that the possi- 
bilities are in fact very limited. 

To continue in the general case, looking at lower-spin blocks, is complicated, so we 
confine ourselves here to the example of a theory with maximum spin-;. Then, as we 
have already seen, the 2 block must be massive (we assume there is in fact a spin-5 
state) and can only be one of ( l lO),  (312) or (512,4). We must now look at A312 and 
All2  which must both be nilpotent for a unique mass-spin theory. 

First consider A3/2, in each of the three cases for the 5 block: 
(i) (110). G3/2 must be some subgraph of 

Now so long as the two outside vertical edges are present we have d, > p1 and so by 
theorem 2 the associated matrix cannot be nilpotent. In fact the only possible 

nilpotent subgraph in this case is simply n 
(ii) (312). G3/2 must be some subgraph of 

which contains the edges 1 2 3, and is nilpotent. To ensure d, S PI one or both of 5 or 
7 must be present. The only possibilities which are not obviously non-nilpotent (e.g. 
do not possess a unique M .I) are &+"'- (a  1 (b  1 (c ) 

In the case ( a )  a quick consideration of the possible consequent G1/2 shows that 
with such a G3/2 these could never be nilpotent (there is no way to avoid a unique MM 
in G l / 2 ) ,  so ( a )  can be eliminated. In both cases ( b )  and (c) a maximal SDC in D3/2 is a 

= O .  Now from (4.6) a similar MM in G3/2 and yields for nilpotency M1 

relation involving the two edges 2 and 3 is required for unique mass in and it can 
be verified that these two equations are in fact incompatible-because of the different 
p(s, n )  factors of (2.2) occurring in the different s-blocks. This is an example of the 
general point that the conditions imposed in different s-blocks must be checked for 
compatibility. So finally, there are no possibilities for unique mass theories with 
G5/2 = (312). 

.J 



1178 w cox 
(iii) (512,4). G3/2 must be a subgraph of 

and in fact the only possibility that does not spoil Gl12 or is not obviously non- 
nilpotent is 

G3/2 = 

Now 

whence 

This also ensures 

[I: )-.? 

since v2 [ 1; is clearly a factor of % 8 ( D 3 / 2 ) .  Now, again using v2 

which gives 

and again this conflicts with the corresponding equation of (4.6) for 
(5/2,4) also fails to provide a good spin-2 block. 

Thus 
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From the above we see that the only possible G512 is t---. and only possible G3/2 

is g.  It is then immediate that the only possible . Thus, the only 

possible unique mass-spin-; theory without RIR must be based on the graph G = 

. However, as Capri (1969) has noted, this graph cannot lead to a unique mass 

theory because in fact on closer analysis the conditions for nilpotency of A312 and All: 
are incompatible. We thus finally conclude that there are no unique mass-spin-2 
theories without RIR. This is despite considering all possible available irreducible 
representations of Zp (Capri for example only considered a very restricted subset of 
these-in fact the central tower of unit width). We conjecture that this is so for all 
spins-? or greater and so for these we must introduce RIR. Note that for spin-? there is 
in fact precisely one spin-? theory with unique mass, without RIR, and this is based on 
the graph containing the representations a($ 1 3)O a($ 0 3). This theory is 
equivalent to the usual Fierz-Pauli or Rarita-Schwinger spin-; theory. The situation 
for integer spin theories is not so clear, but we would be surprised if similar results did 
not follow. 

The above work was based on the assumption that G512 was connected. We now 
show that this is in fact necessary for a unique mass-spin-? theory. By an obvious 
extension of the corresponding integer spin result given in Cox (1974a, b, c), GSl2 
must have the form shown in figure 3 where G1 is connected and non-trivial, while G2 

is 

L i  

El 

Figure 3. General form for a disconnected maximum spin block. GI  must be non-trivial. 

can be disconnected combs, which must have nilpotent matrices. From the previous 
work the only candidates for GI  are 

M 

. Thus we can only have L. of which only - then allows nilpotent G2,  namely, 

A. G5/2= 1 
L - 

But for this graph the D312 and D 1 / 2  are identical to the previous case of G = 
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and we know these cannot be both nilpotent-in short the addition of the extra edges 

makes no difference to the nilpotency of A3/2 ,  All2. 

5. Equations with RIR 

Since we seem forced into using RIR we must consider how much of our graph theory 
carries over to this case. The answer is, most of it. The strongest restrictions placed 
on our graphs were that the corresponding undirected graphs be bipartite and that the 
corresponding digraphs be symmetric about the l I  axis. In fact, even when arbitrary 
numbers of repeated representations are introduced the graphs are still bipartite and 
symmetric. They are however no longer lattice graphs and indeed not even planar in 
general, so the graph theory results become more difficult to apply because of the 
consequent loss in pictorial simplicity. Also, theorem 3 does not apply. 

As a first example, consider the representation 

= 2 ( - t , 4 ) 0 2 ( t , t ) O ( - t , ~ ) O ( t , ~ )  (5.1) 
which has been studied in detail by Hurley and Sudarshan (1975). The graph G and 
the s-block graphs G, are shown in figure 4. A312 can clearly be made massive. 

Figure 4. G and G, graphs for the representation (6.1), 

Further, if AI/* is to be nilpotent theorem 2 shows that the index of nilpotency must 
satisfy 2 s 4  d 3 since from the graph d ,  = 1, P I =  3 with a perfect matching. This 
implies that the minimal equation of Lo must be either 

L:(L:- m’) = 0 
or 

L;(L; - m2) = o 
which is precisely what Hurley and Sudarshan found. Of course, their calculations 
were more lengthy because they actually exhibited the form of LO and the above 
equations, while our results are merely a list of possibilities which have to be checked 
by the further detailed calculations. However, as a first guide the graphical approach 
is useful, and as we have seen can also organise and simplify the necessary cal- 
culations. 

Recently Singh and Hagen (1974) have generalised the Rarita-Schwinger 
Lagrangian theory to arbitrary spin using the representation 

= (-- ;, s + 1 ) O  (+, s + 1 ) 0  (4, s)O (t, s )  

r -2  

0 2  ((-& I +  1)0(& I +  1)) 
1=1/2 
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in ( lo ,  11) notation. This choice was governed by the requirement of minimum number 
of field components. If it is true, as our results suggest, that RIR are essential for 
spins-? or greater then the Singh and Hagen representation would seem to be the most 
natural to adopt for high-spin theories, because of the economy in the number of field 
components and the comparatively simple graphical form. (Note however that the 
Singh-Hagen theory is almost certainly acausal, simply because its spin-; case is.) 

Consider for example the Singh-Hagen representation for spin-?. The relevant 
graphs are given in figure 5. This representation has also been studied by Capri (1969) 

Figure 5. G and G, graphs for the Singh-Hagen spin-; theory. 

and Frank (1973). By inspection of the G, graphs we see that the required conditions 
for unique mass can be satisfied-A5/2 can be made massive and A3/2, A1/2 can be 
made nilpotent, all independently. By noting d, and for G3/2 and G1/2 we see that 
the minimal polynomial of A312 must be A & = 0 ,  and that of A112 can only be 
A:/2 = 0 where 3 s q s 4. This means that the minimal equation for Lo can at most 
only be one of 

L&; - m = 0 

or 

L:(L; - m 2 >  = 0. 

In fact, by generalising the above we find that for the general Singh-Hagen 
representation for half odd integer spin-j, the minimal equation of LO can only be at 
most one of 

(5.3) 
1 L:(L;- m 2 )  = 0 j - ~ s q s 2 j -  1. 

However, from standard work of Umezawa and Visconti (1956) corrected by Glass 
(1971) and Chandrasekaran et a1 (1972) we must have 42=2j-1,  where j is the 
maximum physical spin actually carried by the field (not the maximum spin in the 
representation 9, although in the Singh-Hagen theory they are the same thing). Thus, 
there must be at least one s-block in the theory which has nilpotency index 2j-  1 or 
greater. By considering MM on the s-blocks of the general Hagen and Singh represen- 
tation for maximum spin-j, only the t block can satisfy this, and from (6.3) the minimal 
equation of LO can only be 

Lii-l (Lo-m ) = O .  (5.4) 
In particular, the Hagen-Singh theory cannot suffer from the Glass pathology in which 
q > 2s - 1. From the graphs we can easily see how this pathology can occur. All we 
have to do is to add another repeated representation below the maximum spin-j. This 
will increase PI without increasing the spin and so by theorem 3 will allow the 
nilpotency index of the 4 block to rise above 2 j  - I .  An example of this is provided by 
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the Hurley-Sudarshan representation (5.1). The original Rarita-Schwinger spin-; 

for which /31(G1/2)= 2, yielding nilpo- representation is based on the graph 

tency index 2 for the 5 block, and therefore minimal equation 
1 

L:(L:- d)= o 
for Lo, which fits in with ‘4 = 2 j -  1’. However, on doubling up the 9(f 0 f) represen- 

tation the graph becomes 1 for which P1(G112)= 3, yielding the possible 

minimal equations (5.2). The higher degree equation violates the original Umezawa- 
Visconti relation, and indeed is precisely the counter example used by Glass (1971). 
Note that the condition that in a theory with maximum physical spin-j there must be at 
least one s-block with nilpotency index 2j- 1 or greater can be translated into the 
graphical condition that at least one G, must have a p1 L 2j  - 1. Although we have 
not done so here, this could clearly be used in eliminating possibilities, in addition to 
the methods of § 4 .  For example, it immediately confirms the statement of Capri 
(1969) that the central tower of unit width, with no RIR, cannot support a unique mass 
theory for spin-j 32. This follows because p1 = s +$ for the representation, so p1 5 
2j -1  gives j s ; ,  

6. Conclusion 

The problem of high-spin equations coupled to an external electromagnetic field 
needs little introduction. At the quantised level the field commutators involve the 
external field and violate relativistic invariance (Johnson and Sudarshan 1961), and at 
the classical level this is manifested as acausal (or failure of) propagation for certain 
values of the external field (Velo and Zwanzinger 1969). It seems now that all well 
known high-spin theories have been tested for the Velo-Zwanzinger acausality 
pathology and the only theories free of acausality are those requiring indefinite metric 
for quantisation-for example Bhabha’s multi-mass equations. There is a tendency 
therefore to suspect that acausality is inevitable for spin greater than 1 unless an 
indefinite metric quantisation is accepted. However, this suspicion is really based on a 
very small number of examples, and there are apparently vast numbers of possible 
free field theories for a given spin-there is no general proof that they will all be 
acausal when we turn on the external field. It is therefore important to find some way 
of classifying and studying the possible free field theories, so that one has an idea of 
what is available for use in an interaction theory. The testing of these theories for 
consistency is another problem. The consistency problems arise essentially from the 
constraints in the theory, which in turn are related to the minimal polynomials of Lo 
and the s-blocks. It is therefore useful to have a quick method of finding the possible 
minimal polynomials also. 

We have presented a graph theoretical approach to the problem of field equations 
based on reducible representations of LZP corresponding to half integer spin which 
should help in locating good free field theories. The advantage of the approach is 
particularly apparent in the absence of RIR, for then the graphs are very simple, and a 
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great deal can be said about the properties of the equations without any algebraic 
calculation at all. Having given a number of relevant results we have applied these to 
show the very limited range of possible theories available for describing unique 
mass-spin if we do not use RIR. In the case of a wider mass-spin spectrum the 
methods are still applicable, but then the quantisability of the resulting theory must 
also be tested (which in fact is also assisted by use of the special form (2.3) for the 
s-blocks). In previous attempts at constructing high-spin unique-mass theories few 
people have taken advantage of all available representations in the Fermi-plane but 
have chosen to introduce extra field components by introducing RIR. The work of § 4 
suggests that this may in any case be essential for half odd integers of or more, and 
we would expect a similar result for integer spin. When RIR are allowed the graph 
theoretical methods still apply, but are more difficult to use because of the complexity 
of the graphs, Nevertheless, they provide a useful initial approach to finding good 
theories. 

A number of authors have considered alternative graph theoretical approaches to 
high-spin equations. 

Shelepin (1961) used standard graphical methods of angular momentum analysis 
to study the structure of the L, algebra, while Biritz (1975a, b) has applied the same 
techniques to the L, matrices in the special case of Lo Hermitian. Despite well 
developed techniques, the angular momentum approach is very complicated, even for 
the simple case of the Fierz-Pauli spin-: algebra (Shelepin 1961), although the 
analysis of such algebras by any means is notoriously difficult. (The Fierz-Pauli spin-? 
theory is of course not included in Biritz’s analysis, since Lo is not Hermitian in this 
case.) Only in the case of Lo Hermitian does it seem that the angular momentum 
graphical analysis is a convenient tool for high-spin analysis, as developed by Biritz. 

In the graph theoretical approach presented in this paper there is no need for 
angular momentum analysis of the spin structure, because the mass spectra for each 
spin block are considered separately. This is the specific advantage of the Gel’fand- 
Yaglom representation-it is adapted to the space rotation subgroups of the 
representation 9. From a group theoretical point of view the graphs of this paper 
represent connectivities implied by the generalised Clebsch-Gordon theorem applied 
to 9(t 4) 0 9, in a representation of LO adapted to the space rotation groups in 9, 
while the angular momentum graphs represent connectivities implied by the Clebsch- 
Gordon theorem applied to 

where 

is the rotation group decomposition of %!. 
Another graphical approach to high-spin equations is that of Frank (1973). He 

uses essentially the same graphs as the present paper, but only to characterise and 
represent the Lagrangian theories, and to represent decomposition into s-blocks. He 
makes no use of graph theoretical methods to actually examine the structure of 
specific theories, or to assist in calculations. 

We remark finally that the essential features of much of this work are the simple 
bipartite form of the graphs involved, and the reflection symmetry. Ultimately these 
depend on the structure of the group under which the equations are covariant-the 
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Lorentz group in this case. Thus, the graph theoretical approach is merely a pictorial 
means of taking advantage of the high degree of symmetry imposed on the equations 
by the group structure. One would therefore expect the same sort of device to be 
useful for the practical study of equations covariant under other groups. 
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